Content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donor program</td>
<td>2</td>
</tr>
<tr>
<td>Public Relations</td>
<td>4</td>
</tr>
<tr>
<td>Autopsies</td>
<td>7</td>
</tr>
<tr>
<td>Tissue supply</td>
<td>9</td>
</tr>
<tr>
<td>Finances</td>
<td>10</td>
</tr>
<tr>
<td>Research Projects</td>
<td>11</td>
</tr>
<tr>
<td>Publications</td>
<td>26</td>
</tr>
<tr>
<td>Staff and collaborations</td>
<td>42</td>
</tr>
<tr>
<td>List of abbreviations</td>
<td>44</td>
</tr>
</tbody>
</table>

Editors

Inge Huitinga
Mignon de Goeij

Correspondence

Netherlands Brain Bank
Meibergdreef 47
1105 BA Amsterdam
The Netherlands

T (+31) 20 566 5499
F (+31) 20 691 7466
infonhb@nin.knaw.nl

www.brainbank.nl | www.hersenbank.nl
www.herseninstituut.nl

The Netherlands Brain Bank is a department of the Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW)
Donor Program

On December 31, 2017 a total of 4752 donors were registered with the Netherlands Brain Bank (NBB). In 2017, the number of new donor registrations was 770. The NBB has a prospective donor program, registering donors during life, via informed consent. Read more about the NBB’s registration procedure here, and about NBB-Psy, a donor program within the NBB specifically focused on psychiatric disorders, here. Figure 1 shows the total number of registered donors (A), new registrations in 2017 (B), new registrations as compared to earlier years (C), and new registrations of donors with psychiatric disorders (D). When a donor registers with multiple diagnoses, only the main diagnosis is presented.

Figure 1: The total amount of living donors on 31-12-2017 per diagnosis (A), the new registrations in 2017 per diagnosis (B), the new registrations in 2017 per diagnosis compared to earlier years (C), and the new registrations within NBB-Psy in 2017, per diagnosis (D).

When a donor registers with multiple diagnoses, only the main diagnosis is presented. Abbreviations: AD; Alzheimer’s disease, Control; Non-demented control, FTLD/Tau; Frontotemporal lobar degeneration/Tauopathy, MS; Multiple Sclerosis, Other; Other neurological diagnoses, Other dem; Other types of dementia, PD/DLBD; Parkinson’s disease/Diffuse Lewy body dementia, PSP; Progressive supranuclear palsy, Psy; Psychiatric disorders, ADHD; Attention deficit hyperactivity disorder, ASD; Autism spectrum disorder, BPD; Bipolar disorder, MDD; Major depressive disorder, OCD; Obsessive compulsive disorder, PTSS; Post-traumatic stress disorder, SCHIZ; Schizophrenia.
Cohorts

The NBB cooperates with several clinical research cohorts, of which participants are informed about the NBB and asked whether they wish to register as a brain donor. The clinical research cohorts with which the NBB participates are:

- **VUmc Alzheimer Center:** all patients of the VUmc Alzheimer Center are informed about the possibility to register as a brain donor. Within the Alzheimer Center, there are several specific brain donor programs:
 - 100-plus study, project leader Dr. H. Holstege.
 - 90-plus study, project leader Dr. P.J. Visser.
 - Pathological substrate of clinical variability in Alzheimer’s disease (PAGE-AD) study, project leader Dr. R.F. Bouwman.
 - Twin 60++ in cooperation with the Netherlands Twin Register, project leader Dr. P.J. Visser.
- **Prevention of dementia by intensive vascular care (PreDIVA),** project leader Prof. P. van Gool, AMC Amsterdam.
- **Collaborations with specialized nursing homes, who inform their residents about the NBB:**
 - Dijk en Duin: Elderly persons with psychiatric symptoms and/or cognitive behavioural problems.
 - Nieuw Unicum: Multiple Sclerosis.
- **Psychiatric clinical research cohorts included in the NBB-Psy consortium (cohort name, diagnosis):**
 - AMC OCD, obsessive compulsive disorder
 - AMC OCD DBS, obsessive compulsive disorder with deep brain stimulation
 - NOCDA, obsessive compulsive disorder
 - BEPP/EMDR, post-traumatic stress syndrome
 - BioMap, post-traumatic stress syndrome
 - Booster, post traumatic stress syndrome
 - Paroxetine/OGT, post-traumatic stress syndrome
 - Politiepoli, post traumatic stress syndrome
 - GROUP, schizophrenia
 - BiG, bipolar disorder
 - DELTA, major depression disorder
 - DIADE, major depression disorder and bipolar disorder
 - ECT, major depression disorder
 - MOTAR, major depression disorder and anxiety
 - NESDA, major depression disorder and anxiety
 - NESDA-fam, family members of people with major depression disorder and anxiety
 - NESDO, elderly with major depression disorder and anxiety
 - Impact, attention deficit hyperactivity disorder
 - Karakter, attention deficit hyperactivity disorder and autism spectrum disorder
 - NeuroIMAGE, attention deficit hyperactivity disorder
 - BOA, autism spectrum disorder
Public Relations

The NBB continues to create awareness for its activities via several media and events. Table 1 provides an overview of articles etc. that were published in 2017, and focused on the NBB. In addition to the items in the overview, the NBB publishes regularly on its own Facebook- and Twitter-accounts, and the NBB websites: www.hersenbank.nl, www.brainbank.nl, www.nhb-psy.nl (until 2017), www.nbb-psy.nl (until 2017), www.wehebbenhersensnodig.nl (campaign website for NBB-Psy, until 2-17). Also, the NBB has brochures that are distributed at several sites.

Table 1: Overview of public relations activities and articles about the NBB in 2017. *Original Dutch title were translated to English.

<table>
<thead>
<tr>
<th>Date</th>
<th>Title*/Description</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-3-2017</td>
<td>The NBB for MS, article about NBB and its MS tissue collection</td>
<td>MS Research online newsletter</td>
</tr>
<tr>
<td>6-3-2017</td>
<td>Saskia Palmen talks about NBB at Psysalon, meeting for patients/people involved with psychosis</td>
<td>Event</td>
</tr>
<tr>
<td>30-3-2017</td>
<td>Day for Bipolar Disorder, radio interview with Geertje de Lange (NBB staff) about the NBB-Psy/bipolar disorder</td>
<td>Radio, Omroep Flevoland</td>
</tr>
<tr>
<td>30-3-2017</td>
<td>Attention for Day for Bipolar Disorder, NBB-Psy, and radio interview with Geertje de Lang (see above)</td>
<td>UMC Utrecht Hersencentrum Twitter, Leo Schouwenaar (Omroep Flevoland Radio) Twitter, Ypsilon (Patient association) Twitter, VMDB (Patient association) Twitter</td>
</tr>
<tr>
<td>April 2017</td>
<td>“Message from the Netherlands Brain Bank”, article about the NBB</td>
<td>Internet/magazine, newsletter 22q11 study (Maastricht University)</td>
</tr>
<tr>
<td>April 2017</td>
<td>“Netherlands Brain Bank for Psychiatry”, article about the NBB</td>
<td>Internet, woonzorgnet.nl</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Too often ‘mistakes’”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>Telegraaf, national newspaper</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Diagnosis very often wrong”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>Noord Hollands Dagblad, regional newspaper</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>Radio interview with Annemieke Rozemuller about the NBB and differences between clinical and pathological diagnoses</td>
<td>Radio, NPO 1, news</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>News item about the NBB and differences between clinical and pathological diagnoses</td>
<td>Television, NPO 1, evening news</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Many patients with brain disease got wrong diagnosis”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>Nu.nl, news website</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Cause of death too often wrong”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>NOS.nl, news website</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Doctors often wrong about brain diseases”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>Max Vandaag, news website</td>
</tr>
<tr>
<td>24-4-2017</td>
<td>“Brain autopsy often shows other cause of death than officially reported”, article about the NBB and differences between clinical and pathological diagnoses</td>
<td>Blik op nieuws, news website</td>
</tr>
<tr>
<td>26-4-2017</td>
<td>Research meeting NBB-Psy, lectures by Lot de Witte, Marjolein Sneeboer, Mark Mizee</td>
<td>Event, NBB</td>
</tr>
<tr>
<td>May 2017</td>
<td>“The NBB for MS, the precious gift from braindonors makes MS-research possible”, article about NBB-MS</td>
<td>Rondon MS, patient organization magazine</td>
</tr>
<tr>
<td>May 2017</td>
<td>“Collecting special brains”, article about NBB</td>
<td>Magazine, Amsterdam Medical Center</td>
</tr>
<tr>
<td>May 2017</td>
<td>“Online registration Netherlands Brain Bank”, article about the new online-registration possibility of the NBB</td>
<td>Internet, NESDA.nl</td>
</tr>
<tr>
<td>5-5-2017</td>
<td>“Neuropathologist concerned for profssion”, interview with Annemieke Rozemuller about the NBB and differences between clinical and pathological diagnoses</td>
<td>Medisch Contact, online magazine for medical proffesionals</td>
</tr>
<tr>
<td>22-5-2017</td>
<td>An evening with Erik Scherder, Inge Diepman, Inge Huitinga about the NBB and the Amsterdamse Bos Golf (The proceeds of the evening and the golf tournament go to the NBB)</td>
<td>Event</td>
</tr>
<tr>
<td>Date</td>
<td>Title*/Description</td>
<td>Medium</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>22-5-2017</td>
<td>Interview with Rosa Douw and Inge Huitinga about the NBB-MS, in the program 'Koffietijd'</td>
<td>Television, RTL 4</td>
</tr>
<tr>
<td>31-5-2017</td>
<td>“Searching for the treatment possibilities of MS”, article about NBB-MS</td>
<td>Website, mijn-lichaam.com</td>
</tr>
<tr>
<td>June 2017</td>
<td>“Open about brain donation”, article about presence of Saskia Palmen at Psyson (6-3-2017)</td>
<td>Magazine, Ypsilon News</td>
</tr>
<tr>
<td>14-6-2017</td>
<td>“Searching for the treatment possibilities of MS”, article about NBB-MS</td>
<td>Digital newspaper, Telegraaf</td>
</tr>
<tr>
<td>4-7-2017</td>
<td>Amsterdamse Bos Golf, Golf Tournament and auction organized by Rotary Aalsmeer-Uithoorn, proceeds go to NBB</td>
<td>Event</td>
</tr>
<tr>
<td>12-7-2017</td>
<td>Article about the Amsterdamse Bos Golf Tournament</td>
<td>Newspaper</td>
</tr>
<tr>
<td>June 2017</td>
<td>Amsterdam Brain & Cognition Journal, interview with Inge Huitinga about women in science</td>
<td>Magazine and internet</td>
</tr>
<tr>
<td>24-7-2017</td>
<td>“5 year Netherlands Brain Bank for Psychiatry (NBB-Psy): What are the results?”, article about the closing of the active donor recruitment for NBB-Psy</td>
<td>Internet, Nedka.nl</td>
</tr>
<tr>
<td>27-7-2017</td>
<td>“Increase in number of brain donors with depression, also thanks to NESDA participants”, article about NBB-Psy</td>
<td>Internet, Nesda.nl</td>
</tr>
<tr>
<td>August 2017</td>
<td>Article about NBB-Psy in newsletter of psychiatric care organization Reinier van Arkel</td>
<td>Internet, reiniervanarkel.nl</td>
</tr>
<tr>
<td>25-8-2017</td>
<td>Multiple Tweets by Menno Oosterhoff about brain donation</td>
<td>Twitter</td>
</tr>
<tr>
<td>30-8-2017</td>
<td>“Shall I donate my brain?” Blog by Menno Oosterhoff (author and psychiatrist) about NBB-Psy and his decision to become a brain donor</td>
<td>Internet, Medisch Contact</td>
</tr>
<tr>
<td>31-8-2017</td>
<td>Multiple Tweets by Menno Oosterhoff concerning brain donation</td>
<td>Twitter</td>
</tr>
<tr>
<td>September 2017</td>
<td>“5 year Netherlands Brain Bank for Psychiatry (NBB-Psy): What are the results?”, article about the closing of the active donor recruitment for NBB-Psy</td>
<td>Magazine, Impuls en Woortblind</td>
</tr>
<tr>
<td>September 2017</td>
<td>“5 year Netherlands Brain Bank for Psychiatry (NBB-Psy): What are the results?”, article about the closing of the active donor recruitment for NBB-Psy</td>
<td>Magazine, Ypsilon News (Ypsilon, patient association)</td>
</tr>
<tr>
<td>September 2017</td>
<td>“The Netherlands Brain Bank for Psychiatry”, article about NBB-Psy</td>
<td>Family newsletter Magnolia, Reinier van Arkel</td>
</tr>
<tr>
<td>6-9-2017</td>
<td>Meeting for patient associations about 5 years of NBB-Psy, lectures by Menno Oosterhoff, Saskia Palmen</td>
<td>Event, NBB</td>
</tr>
<tr>
<td>6-9-2017</td>
<td>Multiple Tweets by Menno Oosterhoff concerning brain donation</td>
<td>Twitter</td>
</tr>
<tr>
<td>7-9-2017</td>
<td>“Can we have your brain?”, blog about NBB by Madelon Wonink</td>
<td>Internet, madelonwonink.com</td>
</tr>
<tr>
<td>12-10-2017</td>
<td>Petra Brom and Laura Boekel represent NBB at a public event of the Dutch Brain Foundation</td>
<td>Event, Nederlandse Hersenstichting</td>
</tr>
<tr>
<td>24-10-2017</td>
<td>“MS Out-of-the-Box Grant to the Netherlands Brain Bank”, article about the NBB receiving a €100,000 grant from MoveS and MS Research</td>
<td>MS Research online</td>
</tr>
<tr>
<td>25-27-10-2017</td>
<td>Lecture by Inge Huitinga about research by NBB and Netherlands Institute for Neuroscience (Immunology group) on differences in MS between males/females</td>
<td>Event, European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS)</td>
</tr>
<tr>
<td>7-11-2017</td>
<td>“Doktors of tomorrow”, television special about the brain, including about the NBB</td>
<td>Television, NPO 1</td>
</tr>
<tr>
<td>9-11-2017</td>
<td>Mark Mizee represents the NBB</td>
<td>Event, GGZ Rivierduinen</td>
</tr>
<tr>
<td>13-11-2017</td>
<td>Mark Mizee represents the NBB</td>
<td>Event, Memorabel Deltaplan Dementie</td>
</tr>
</tbody>
</table>

Table 1: NBB PR activities (continued)
<table>
<thead>
<tr>
<th>Date</th>
<th>Title*/Description</th>
<th>Medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-15-11-2017</td>
<td>Rosa Douw, Petra Brom, Inge Huitinga represent the NBB and the “MS Researchdays”, NBB leaflet is distributed in goody bags</td>
<td>Event, Patient Association MS Research</td>
</tr>
<tr>
<td>17-11-2017</td>
<td>Article by Geertje de Lange about NBB-Psy</td>
<td>Internet, UMC Utrecht, Brain Center Rudolf Magnus</td>
</tr>
<tr>
<td>30-11-2017</td>
<td>Symposium about MS, to improve the collaboration of healthcare professionals, Rosa Douw and Petra Brom are present to inform the visitors about the NBB</td>
<td>Event, MSMS2017 and MSZorg</td>
</tr>
<tr>
<td>December 2017</td>
<td>“5 year Netherlands Brain Bank for Psychiatry (NBB-Psy): What are the results?”, article about the closing of the active donor recruitment for NBB-Psy</td>
<td>Magazine, PlusMinus (VMDB, Patient Association)</td>
</tr>
</tbody>
</table>
Autopsies and diagnostics

On December 31, 2017 a total number of 4304 autopsies had taken place via the NBB. In 2017 the total number of autopsies was 162. The numbers of autopsies in total, in 2017, and broken down by diagnosis are shown in figure 2 A-C. Also the average post-mortem delay ± standard deviation (time between death and the end of the autopsy) is shown in figure 2D.

The NBB uses different autopsy procedures for different diagnoses, as to include the different affected brain regions. In all protocols, one hemisphere is fixed in formalin for four weeks and used for post-mortem diagnoses and one hemisphere is dissected. Samples from this hemisphere are stored frozen, in FFPE, or kept fresh and immediately sent for psychiatric diagnoses.

Figure 2: The total number of autopsies in 2012-2017 (A), all autopsies since 1985 broken down by diagnoses (B), all autopsies in 2017 broken down by diagnoses, psychiatric diagnoses broken down separately (insert)(C), average post-mortem delay ± standard deviation (time between death and the end of the autopsy) in 2012-2017 in hours:minutes (D). When a donor had multiple diagnoses, only the main diagnosis is presented. All figures show the neuro-pathological diagnoses. In cases where this neuro-pathological diagnosis is not yet available, the clinical diagnosis is presented.

Abbreviations: AD; Alzheimer’s disease, Control; Non-demented control, FTLD/Tau; Frontotemporal lobar degeneration/Tauopathy, MS; Multiple Sclerosis, Other; Other neurological diagnoses, Other dem; Other types of dementia, PD/DLBD; Parkinson’s disease/Diffuse Lewy body dementia, PSP; Progressive supranuclear palsy, Psy; Psychiatric disorders, ADHD; Attention deficit hyperactivity disorder, BPD; Bipolar disorder, MDD; Major depressive disorder, PTSS; Post-traumatic stress disorder.

The NBB uses different autopsy procedures for different diagnoses, as to include the different affected brain regions. In all protocols, one hemisphere is fixed in formalin for four weeks and used for post-mortem diagnoses and one hemisphere is dissected. Samples from this hemisphere are stored frozen, in FFPE, or kept fresh and immediately sent for psychiatric diagnoses.
to researchers for cell culture of immediate analysis. In addition to the brain, donors can choose to also donate their eyes, spinal cord and/or cervical lymph nodes. In 2017 a total of 27 eyes were donated, spinal cord was donated from 24 donors and cervical lymph nodes from 1 donor. Read more about our autopsy procedures here.

Post Mortem diagnosis
After the autopsy, the tissue from the formalin-fixed hemisphere is divided in approximately eighteen standard regions, embedded in paraffin, cut and (immuno) histochemically stained. The sections, as well as the clinical medical information of the donor, are then evaluated by a neuropathologist who provides a post-mortem diagnosis. The brain tissue is only disseminated to researchers after the post-mortem diagnosis has been made, with the exception of the fresh tissue sent to researchers immediately after autopsy. Read more about our post-mortem diagnosis here.
Tissue supply

Tissue from the NBB is supplied to non-profit and for profit research organizations, if the application has been approved by the NBB’s tissue advisory board, and a Material Transfer Agreement (MTA) has been concluded between the NBB and said organization.

In 2017, 23 new MTA’s were signed, of which 19 with non-profit organizations and 4 with for profit organizations. On December 31, 2017 the total number of signed MTA’s was 190, of which 161 with non-profit organizations and 29 with for profit organizations.

Figure 3A shows the number of tissue requests. The figure shows the number of ‘New applications’, ‘Supplementary applications’ (applications for additional tissue for a project that had previously received tissue from the NBB) and ‘Continuous projects’ (applications for which tissue is collected prospectively from upcoming autopsies, often applications for fresh tissue).

Figure 3B shows the number of samples disseminated in 2017 compared to previous years, divided by post-mortem diagnosis. The category ‘Panr’ represents samples of which the pathological report is not ready yet at the time of publication of this report, and therefore the post-mortem diagnosis is not known yet. This concerns prospective projects where researchers received fresh tissue immediately after autopsy.

Figure 3: The total number of new applications, supplementary applications (follow-up applications for projects that have received tissue before) and continuous projects (research projects that request tissue prospectively from upcoming autopsies) in 2012 – 2017 (A), all samples that were disseminated in 2013 - 2017 per post-mortem diagnosis (B). Abbreviations: AD; Alzheimer’s disease, Control; Non-demented control, FTLD/Tau; Frontotemporal lobar degeneration/Tauopathy, MS; Multiple Sclerosis, Other; Other neurological diagnoses, Other dem; Other types of dementia, PD/DLBD; Parkinson’s disease/Diffuse Lewy body dementia, Pan; Pathological report not ready, Psy; Psychiatric disorders.
Finances

The NBB is a department of the Netherlands Institute of Neuroscience (NIN), which is an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW). As such, the NBB receives structural financial support from the NIN and the KNAW. Besides this structural support, the NBB is entirely dependent on grants, donations and the financial contributions from the researchers who apply for tissue at the NBB. An overview of the structural income and received grants is featured in table 2.

Table 2: Income of the NBB in 2017. *All amounts are rounded to the nearest hundred Euro’s. ** Total amount for the period of 2012 – 2020 (NWO), 2013-2017 (Stichting MS Research), and 2017-2019 (Hersenstichting).

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
<th>Amount*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural support KNAW</td>
<td></td>
<td>€220,000</td>
</tr>
<tr>
<td>NWO</td>
<td>Project 2012-2020: The Netherlands Brain Bank for Psychiatry (NBB-Psy)</td>
<td>€3,450,000**</td>
</tr>
<tr>
<td>Stichting MS Research</td>
<td>Project 2013-2017: The Netherlands Brain Bank for MS (NBB-MS)</td>
<td>€444,400**</td>
</tr>
<tr>
<td>Hersenstichting</td>
<td>2017 - 2019</td>
<td>€100,000**</td>
</tr>
<tr>
<td>Rotary Club Aalsmeer-Uithoorn</td>
<td>Project: Differences in clinical and neuro-pathological diagnoses</td>
<td>€42,500</td>
</tr>
<tr>
<td>Donations</td>
<td></td>
<td>€110,200</td>
</tr>
</tbody>
</table>
Research Projects

This chapter lists the research projects which have received tissue from the NBB in 2017.

Adorjan, I., Bin, S., Feher, V., Tyler, T., Veres, D., Szele, F. Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary; Department of Physiology, Anatomy and Genetics, University of Oxford, UK; Imperial College London, UK. Investigation of neuronal biomarkers in neuropsychiatric diseases.

Amor, S. VU University Medical Center, Amsterdam, The Netherlands. Pentraxin 3 - a novel anti-inflammatory agent in MS?

Amor, S., Kipp, M., van der Valk, P. VU University Medical Center, Amsterdam, The Netherlands. Pre-active MS lesions hold clues for reversal of inflammation. Stichting MS Research.

Arietti, M., Massey, S., Hözlé, M-B., Kamermans, M. Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; McGovern School of medicine, university of Texas at Houston, Houston, USA. Restoration of high acuity vision in human.

Bartolome, F., Krzyzanowska, A., De La Cueva, M., Pascual, C., Antequera, D., Villarejo, A., Rabano, A., Fortea, J., Alcolea, D., Lleo, A., Ferrer, I., Hardy, J., Abramov, A.Y., Carro, E. Networking Biomedical Research Center on Neurodegenerative Diseases (CIBERNED), Spain; Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), Madrid, Spain; Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Neurology service Hospital Universitario 12 de Octubre, Madrid, Spain; Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain; Memory Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain. Institut d'Investigacions Biomediques Sant Pau - Universitat Autònoma de Barcelona, Barcelona, Spain; IDIBELL-Hospital Universitari de Bellvitge, Hospital de Llobregat, Spain; Universitat de Barcelona, Hospital de Llobregat, Barcelona, Spain. Annexin A5 prevents amyloid-β-induced toxicity in Alzheimer’s disease choroid plexus.

Battiston, M., Schenk, G., Samson, R.S., Gandini Wheeler-Kingshott, C.A., Geurts, J.J.G., Schneider, T., Grussu, F., Wergeland, S., Tachrount, M., Yiannakas, M.C., Tur Gomez, C. Queen Square MS Centre, UCL Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom; Department of Anatomy and Neurosciences, VU University Medical Centre, Amsterdam, Netherlands; Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy; Brain MRI 3T Research Centre, C. Mondino National Neurological Institute, Pavia, Italy; Philips UK, Surrey, United Kingdom; Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Department of Neurology, Haukeland University Hospital, Bergen, Norway. Quantification of myelin in the human spinal cord using Magnetization Transfer Imaging.

Bergen, A.A. et. al. AMC Amsterdam, Department of Clinical Genetics, Amsterdam, The Netherlands. Study of reticular endothelial cells in the retina.

Boon, B.D.C., Hoozemans, J.J.M., Lopuhaä, B., Eigenhuis, K.N., Scheltens, P., Kamphorst, W., Rozemuller, A.J.M., Bouwman, F.H. Dept. of Neurology, Alzheimer Center, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands; Dept. of Pathology, Amsterdam Neuroscience, VU University Medical Center,
Amsterdam, The Netherlands. Neuroinflammation is increased in the parietal cortex of atypical Alzheimer’s disease.

Bridel, C., Jimenez, C.R., Smit, A.B., van Swieten, J.C., van der Flier, W.M.H., van der Vlies, S., Visser, P.J., Teunissen, C.E. Department of Clinical Chemistry, Neurochemistry Lab and Biobank, VU Medical Centre, Amsterdam, The Netherlands; Department of Medical Oncology, OncoProteomics Laboratory, VU Medical Centre, Amsterdam, The Netherlands; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, the Netherlands; Department of Neurology, Erasmus MC - University Medical Centre Rotterdam, The Netherlands; Department of Neurology, Alzheimer Center, VU University Medical Centre Amsterdam, Amsterdam, The Netherlands. Alzheimer Center and Department of Neurology, VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Alzheimer Center and Department of Neurology, VUmc, Amsterdam Neuroscience, Amsterdam, the Netherlands. PRODIA: Development of biomarkers enabling early and accurate differential diagnosis of dementia.

Brinks, J., van Dijk, E.H.C., Habeeb, M., Nikolaou, A., Tsonaka, R., Peters, H.A.B., Sips, H.C.M., van de Merbel, A.F., de Jong, E.K., Notenboom, R.G.E., Kielbasa, S.M., van der Maarel, S.M., Quax, P.H.A., Meijer, O.C., Boon, C.J.F. Department of Ophthalmology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Medical Statistics and Bioinformatics, Leiden University Medical Centre, Leiden, the Netherlands; Department of Vascular Surgery, Leiden University Medical Centre, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Centre, Leiden, the Netherlands; Department of Medicine, Division of Endocrinology and Metabolism, Leiden University Medical Centre, Leiden, the Netherlands; Department of Urology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Ophthalmology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands; Department of Ophthalmology, Academic Medical Centre, University of Amsterdam. The Effect of Corticosteroids on Human Choroidal Endothelial Cells: a Model to Study Central Serous Chorioretinopathy.

Calabresi, P. Fitzgerald, K., Johns Hopkins School of Medicine, Department of Neuroimmunology and Neurological Infections, Baltimore, USA. Do Complement Pathway Genes Increase Risk of Optic Nerve and Retinal Degeneration in Multiple Sclerosis Patients?

Cao, S., Li, X., Dai, D., Bao, A. Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of The Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. ErbB4 deletion in noradrenergic neurons induced manic-like behavior and cognitive impairment.

Cremers, T. University of Groningen, Department of Pharmaceutica analysis, Groningen, The Netherlands. Setting up in vitro neurotransmitter release systems.

Cui, Y., Yang, Y., Dong, Y., Ma, S., Jia, X., Wu, Z., Hu, H. Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience
Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression.

Dai, H., Ping, H. Second Affiliated Hospital, Zhejiang University School of Medicine, Department of Pharmacy, Hangzhou, China. The role and mechanism of annexin A2 on the cerebral vascular dysfunction in Alzheimer’s disease.

De Wit, N., De Vries, H.E., Rozemuller, J.M. Vumc, Department of Molecular cell biology and Immunology, Amsterdam, The Netherlands. Altered shingolipid balance in Alzheimer’s disease: a new therapeutic approach?

Dehay, B., Dovero, S., Porras, G., Breger, L.S., Arotcarena, M-L., Fernagut, P.O., Zhang, L., Yu, X., Manshi, W., Zhao, W., Zhu, T., Zhou, L., Zhang, Y., Li, Q., Xiuping, S., Li, X., Chuan, Q., Bezard E. Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France; Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Bordeaux, France; Motac Neuroscience, Manchester, UK; Université de Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques,, Poitiers, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1084, Poitiers, France; Institute of Laboratory Animal Sciences (ILAS), Beijing, China. Modelling neurodegenerative diseases in rodent and non-human primates using intracerebral injections of patient-derived protein aggregates.

Den Haan, J., Morrema, T., ten Brink, J., Hoozemans, J., Bergen, A., Bouwman, F. VU University Medical Center Alzheimer Center, Neurology, Amsterdam, The Netherlands; Dept. of Pathology, VU University Medical Center, Amsterdam, The Netherlands; Department of Clinical Genetics, Academic Medical Center, Amsterdam, the Netherlands. AD pathological hallmarks in post mortem retinas of AD patients.

Dewachter, I., Vasconcelos, B. Institute of Neuroscience, Université catholique de Louvain (UCL), Department of Cellular and Molecular Neuroscience (CEMO), Brussels, Belgium. Analysis of the cross-seeding mechanism between Aβ and Tau and its relevance in Alzheimer’s disease.

Dichgans, M., Lichtenthaler, S. Institute for Stroke and Dementia Research (ISD), München, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. Identification of key molecular targets and pathways in cerebral small vessel disease (SVD) by proteomics on isolated cerebral microvessels.

Dijkstra, A., Hoozemans, J., Rozemuller, J.M., Seeley, B. VU Medical Center, Department of Pathology, Amsterdam, The Netherlands; University of California, San Francisco, USA. Identifying the role and mechanisms of a novel projection neuron in frontotemporal dementia and other cognitive disorders

Eggen, B., Kracht, L., Biber, K. University Medical Center Groningen, Department of Neuroscience (Medical Physiology), Groningen, The Netherlands; University Medical Center Freiburg, Freiburg, The Netherlands. Morphological alterations of microglia and astrocytes in human post-mortem samples from donors diagnosed with depressive disorder.

Ettle, B., Kerman, B.E., Reiprich, S., Rockenstein, E., Wegner, M., Masliah, E., Gage, F.H., Winkler, J. Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Research Center for Regenerative and Restorative Medicine, Istanbul Medipol University, Istanbul, Turkey; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Division of Neuroscience, National Institute of Aging, Bethesda, USA; Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. The impact of α-synuclein accumulation on oligodendrocyte maturation and myelination in Multiple System Atrophy.

Fleming, T., Nawroth, P.P., Deshpande, D. University Hospital Heidelberg, Internal Medicine I and Clinical Chemistryst, Heidelberg, Germany. Impairment if proopiomelanocortin-mu opioid receptor antinociceptive pathways contributes to painful diabetic neuropathy.
Fliers, E., Boelen, A. Dept. of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Netherlands. Expression of TBL1X, TBL1XR1 and IRS4 in human hypothalamus.

Fransen, N.L., Smolders, J., Mizee, M.R., van Eden, C.G., Luchetti, S., Remmerswaal, E.B.M., Hamann, J., Crusius, J.B.A., Mason, M.R.J., Huitinga, I. Department of Neuroimmunology, The Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Laboratory for Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands; Renal Transplant Unit, Department of Internal Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. Pathological heterogeneity in Multiple Sclerosis: clinical and genetic correlates.

Frenkel-Pinter, M., Shmueli, M.D., Raz, C., Yanku, M., Zilbezweig, S., Gazit, E., Segal, D. Department of Molecular Microbiology and Biotechnology, Interdisciplinary Sagol School of Neurosciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. Alterations of protein glycosylation in Alzheimer's disease.

Gabrusiewicz, K., Antel, J., Aronowski, J., Heimberger, A. The University of Texas M.D. Anderson Cancer Center, Department of Neurosurgery, Houston; McGill University, Montreal, Canada; University of Texas Medical School, Houston. Phenotypic and functional characterization of microglia in gliomas.

Gao, S.F., Zhou, X., Yu, R. Institute of Nervous System Diseases, Xuzhou Medical College, Department of Neurosurgery, Xuzhou, China P.R. The role of CAPON-mediated hypothalamic nNOS-NO system in the pathogenesis of depression.

Geurts, J. et. al. VU University Medical Center, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands; Multiple Sclerosis Center Amsterdam, The Netherlands. Grey matter pathology and connectivity in MS.

Guo, L., Balesar, R., Bao, A., Swaab, D.F. Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder’s Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, The Netherlands. CRH and oxytocin immunocytochemistry in human hypothalamic paraventricular nucleus (PVN) in major depression disorder (MDD) and bipolar disorder (BD).

Guo, L., Stormmesand, J., Balesar, R., Bao, A., Swaab, D.F. Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Mental Disorder’s Management, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, and University of Amsterdam, Amsterdam, The Netherlands. ErbB4 and Tyrosine Hydroxylase immunocytochemistry in human locus coeruleus (LC) in major depression disorder (MDD) and bipolar disorder (BD).

Haify, S.N., Severijnen, L.A.W.F.M., Hukema, R.K. Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, The Netherlands. FMRpolyG and inclusion formation in FXTAS.

Haytural, H., Mermekelas, G., Wigam, S.M., Winblad, B., Orre, L.M., Tjernberg, L.O., Frykman, S. Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden; Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. Proteomic alterations of the perforant pathway synapses in Alzheimer Disease Brain.

Heppenstall, P., Dhandapani, R. EMBL, Mouse Biology Unit, Monterotondo, Italy. Identification of the sensory neurons that mediate mechanical allodynia.

Hirth, M., Simonetti, M., Kuner, R. Pharmacological Institute Heidelberg, Germany. Chemokines involved in perineural invasion in pancreatic cancer.

Hock, C., Konietzko, U., Multhaup, G. University Zürich, Division of Psychiatry Research, Schlieren, Switzerland; McGill University, department of Pharmacology and Therapeutics, Montreal, Canada. Diagnostic Potential of Aβ-clearance Intermediates in Elderly Subjects at Risk for Alzheimer’s Disease.

Hoffmann, A., Reiprich, S., Rockenstein, E., Ekici, A.B., Riemenschneider, M.K., Kuhlmann, T., Reis, A., Wegner, M., Masliaeh, E., Winkler, J. Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität, Erlangen-Nürnb erg, Germany; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neurosciences, University of California San Diego, La Jolla, CA, USA; Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany; Institute of Neuropathology, University Hospital Münster, Germany; Division of Neuroscience, National Institute of Aging, Bethesda, USA; Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany. Immune response and alpha-synuclein: interplay in neurodegeneration and –inflammation in Multiple System Atrophy.

Höglinger, G., Giese, A., Kraus, T. Klinikum rechts der Isar der Technischen Universität München, Laboratory for Translational Neurodegeneration (DZNE), Munich, Germany; Ludwig-Maximilians-Universität München, Center for Neuropathology and Prion Research, München, Germany. Epigenomics of Parkinson’s disease.

Holstege, H. VU University Medical Center, Department of Clinical Genetics, Alzheimer Center, Amsterdam, The Netherlands. 100-Plus Research.

Hoozemans, J.J.M., Rozemuller, J.M., Van Swieten, J.C., Meeter, L. VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands; Erasmus MC, Rotterdam, The Netherlands. Unfolded protein response in FTLD-TDP type B (C90rf72).

Hu, Y., McGurran, H., Boomsma, J. Swaab D.F., Bao, A.M., Sluiter, A. Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China; University of Amsterdam, Amsterdam, The Netherlands, and Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, The Netherlands. Sex differences in Aβ in the development of Alzheimer changes in the 3xTg-AD mice and human brain.
Hu, Y.T., Zhu, Q.B., Unmehopa, U., Bossers K., Hu Y.T., Verwer, R., Balesar, R., Zhao, J., Bao, A.M., Swaab, D.F. Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands. MicroRNA-132 and early growth response-1 in Nucleus Basalis of Meynert during the course of Alzheimer’s disease.

Jarrett, R., Stewart, W., Webb, S. Institute of Comparative Medicine, University of Glasgow, Glasgow, Scotland; Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland. A comparison of viral infections in lymph nodes of patients with Multiple Sclerosis and normal controls.

Jhamandas, J.H., Goncharuk, V., Department of Medicine (Neurology), Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada; Russian Cardiology Research Center, Moscow, Russia. Localization of the amylin receptor in the Alzheimer disease brains.

Kooij, G. VU University medical center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, The Netherlands. The role of microglia in the resolution of neuro-inflammation.

Kramvis, I., Mansvelder, H.D., Meredith, R.M. Department of Molecular and Cellular Neurobiology, Center for Neurgenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurgenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. Post Mortem Human Brain Electrophysiology.

Krauβ, S. Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Department of Regulatory RNA-protein interactions in neurodegenerative diseases, Bonn, Germany. The MID1-PP2A complex: a promising drug target to reduce hyperphosphorylation of Tau and translation of BAC E1.

Laman, J.D. et al. Erasmus Medical Center, Department of Immunology and MS Center, Rotterdam, The Netherlands. Pathogenic mechanisms during multiple sclerosis in the central nervous system and the draining cervical lymph nodes.

Lanz, T., Robinson, W.H., Steinman, L. Stanford School of Medicine, Department of Rheumatology/Immunology, Stanford, CA, USA; Stanford School of Medicine, Department of Neurology, Stanford, CA, USA. Identification of New B-cell Antigens in Multiple Sclerosis.

Lee, K.J., Ryu, J. Korea Brain Research Institute, Department of Structure and Function of Neural Network, Dong-Gu, Daegu, South Korea. Functional role of a synaptic loss-related protein in Alzheimer’s disease.

Li, K., Gong, P., Hong, W., Li, J., Qin, S. Department of Anatomy, Histology and Embryology, Shanghai Medical College, Fudan University, Shanghai, China. Roles of the transcription factor Tlx in regulating the neuropathology of Alzheimer’s Patients.

Liao, Y., Xiao-Lan, Q., Cao, Y., Yu, W-F., Ravid, R., Pei, J., Wenblar, B., Guan, Z-Z. Department of Pathology in the Affiliated Hospital, the Key Lab of Medical Molecular Biology, Guiyang Medical University, Guizhou, P. R. of China; Netherlands Institute for Neurosciences/Brain Bank Consultants, Amsterdam, Netherlands; 4KI-Alzheimer Disease
Research Center, Novum, Karolinska Institute, Huddinge, Sweden. The changes of cholinergic receptors and its correlation with the metabolic procedure of APP in the pathogenesis of Alzheimer's disease.

Lucassen, P.J., Meerhoff, G., Frisen, J., Steiner, E. Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam; Karolinska Institute Sweden. Neurogenesis in the human brain.

Lucassen, P.J., Meerhoff, G., Wang, Q., Swaab, D.F. Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam; Netherlands Institute for Neurosciences, Amsterdam. The glucocorticoid receptor and the stress system in the human brain.

Lucassen, P.J., Doorn, K., Drukarch, B., Van Dam, A.M.W. Brain Plasticity group, Swammerdam Institute for Life Sciences, University of Amsterdam; Department Anatomy and Neurosciences, VU University Medical Center, VU Amsterdam. Brain-region specific microglial phenotypes and responses in Parkinson’s disease.

Luchetti, S., Mason, M., Liere, P., Cossu, S., Sluiter, A., Van Scheppingen, K., Aronica, E., Swaab, D.F., Schumacher, M., Huitinga, I. Neuroimmunology Research Group, Netherlands Institute for Neuroscience NIN), Amsterdam, The Netherlands; Neuropsychiatric Disorders Group, NIN, Amsterdam, The Netherlands; Neuregeneration Research Group, Netherlands Institute for Neuroscience (NIN); U1195 INSERM, University Paris Sud, Paris, France; Neuropathology Department, Academic Medical Center (AMC), Amsterdam, The Netherlands. Neurosteroids as neuroprotective, pro-myelinating and anti-inflammatory agents in Multiple Sclerosis.

Ma, S., Yang, Y., Lin, Z., De Zeeuw, C.I., Hu, H. Center for Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, School of Medicine, Interdisciplinary Institute of Neuroscience and Technology, QiuShi Academy for Advanced Studies, Zhejiang University, Hangzhou, China; Mental Health Center, School of Medicine, Zhejiang University, Hangzhou, China; Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands; Netherlands Institute for Neuroscience for Neuroscience, KNAW, Amsterdam, The Netherlands. βCaMKII Overexpression in Lateral Habenula as a Ideal Depression Model in Rodents.

Malpede, A., de Vries, S., Huitinga, I., Geurts, J.J., Morgan, P.B., Gold, S., Krishna, N., Ramaglia, V., Kole, M. Department of Axonal Signalling and Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands; Department of Clinical Neuroscience, VU University Medical Center, Amsterdam, The Netherlands; Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany; Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Virginia, USA; Department of Immunology, University of Toronto, Toronto, Canada. [TITEL]

Merlini, M., Camici, G. University of Zürich, Schlieren Campus, Division of Psychiatry Research, Schlieren, Switzerland. Cerebrovascular Remodelling in Alzheimer’s disease.

Mills, J.D., Anink, J.J., Swaab, D.F., Aronica E. Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Department of (Neuro)Pathology, Amsterdam, Netherlands; Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands. The role of non-coding RNAs in the establishment and progression of Parkinson’s disease.

Moos, T., Varming, K. Aalborg University, Department of Medicine and Health Technology, Aalborg East, Denmark. Binding of anti-Human Papilloma Virus (HPV) antibodies in human brain samples.

Mulder, J., Lundberg, E., Karolinska Institute, Department of Neuroscience, Stockholm, Sweden. Integration of single cell genomics and spatial proteomics.

Myers, A. et. al. University of Miami, Department of Psychiatry and Behavioral Science, Miami, FL, USA. Genetic examination of late onset Alzheimer’s disease in neuropathological cohorts.

Naidoo, S., Naicker, M., Moodley, K. University of KwaZulu Natal, Nelson Mandela School of Medicine, Therapeutics and Medicines Management (TAMM), Durban, South Africa. Neuro-immunological investigation of auto-immune thyroid factors in bipolar disease.
Isolation of pure microglia cells and the generation of iPSC’s from all NBB-Psy donors.

Nicolas, G., Hoischen, A. Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, Rouen, France; Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands. Detection of low-level mosaic mutations in sporadic Alzheimer disease brains using single molecule deep sequencing.

O'Neil, C. University College Cork. The insulin/IGF-1 signalling system in Alzheimer’s disease: endosomal lysosomal autophagic clearance system components as targets for new therapies to prevent AD.

Ouwendijk, W.J.D., Verjans, G.M.G.M. Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands. Characterization of the local neuron-protective immune responses inhibiting reactivation of herpes simplex type 1 (HSV-1) and varicella zoster virus (VZV) in latently infected human trigeminal ganglia.

Ouwendijk, W.J.D., Verjans, G.M.G.M. Dept of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands. Characterization of the local neuron-protective immune responses inhibiting reactivation of herpes simplex type 1 (HSV-1) and varicella zoster virus (VZV) in latently infected human trigeminal ganglia.

Pihlstrøm, L., van de Berg, W.D.J., Toft, M. Department of Neurology, Oslo University Hospital and Faculty of Medicine, University of Oslo, Norway; Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, Netherlands. Identification of DNA-methylation changes as risk factors for Lewy body disorders.

Ping Lu, K., Kondo, A., Herbert, M., Albayram, O., Tsai, C.Y., Zhou, X.Z. Beth Israel Deaconess Medical Centre / Harvard Medical, Boston, USA. Role of the unique isomerase Pin1 in vascular dementia.

Pollok, K., Mothes, R., Ulbricht C., Paul, F., Niesner, R., Radbruch, H., Hauser, A.E. Charité - Universitätsmedizin Berlin, Immune Dynamics and Intravital Microscopy, Berlin, Germany; Dept. of Neuropathology Charité - Universitätsmedizin Berlin, Berlin, Germany; Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Immune Dynamics, Berlin, Germany; Charité - Universitätsmedizin Berlin, Experimental and Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, and Max Delbrück Center for Molecular Medicine, Berlin, Germany; Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, NeuroCure Cluster of Excellence, Berlin, Germany; Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, Biophysical Analytics, Berlin, Germany; Dept. of Neuropathology Charité - Universitätsmedizin Berlin, Berlin, Germany. A multicomponent-analysis of the human plasma cell-niche in chronic neuroinflammation.

Polymenidou, M., Laferriere, F., Maniecka, Z. University of Zurich, Institute of Molecular Life Sciences, Zurich, Switzerland. Contribution of protein aggregation in the pathogenesis of ALS/FTD: seeding, spreading and toxicity.

Pomeshchik, Y., Roybon, L. Department of Experimental Medical Science, Lund University, Sweden. Molecular analysis of healthy and Alzheimer’s disease hippocampal neurons.

Rizzu, P., Heutink, P. German Center for Neurodegenerative Diseases (DZNE) Tubingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Profiling the promoterome of the human brain.

Rizzu, P., Menden, K., Heutink, P. German Center for Neurodegenerative Diseases (DZNE) Tubingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. Dissecting molecular mechanisms in dementia.

Roet, M., Jansen, A., Hoogland, G., Jahanshahi, A., Temel, Y., School for Mental Health and Neuroscience, Department of Neurosurgery and European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, The Netherlands. Magnetothermal Deep Brain Stimulation in depression.

Rostock C., Schrenk-Siemens K., Pohle J., Siemens J. Department of Pharmacology, University of Heidelberg, Heidelberg, Germany. Differentiation of human embryonic stem cells into DRG sensory neurons in vitro - A human cell culture model system to study pain and nociception.

Rouvroye, M.D., Mulder, C.J.J., Bouma, G., Van der Valk, P., Rozemuller, J.M., van Dam, A.M.W., Wilhelms, M.M. VU University Medical Center, Departments of Gastroenterology, Pathology, and Anatomy and Neurosciences, Amsterdam, the Netherlands. Neuropathological changes and underlying immunological mechanisms in patients with coeliac disease and neurological symptoms.

Rozemuller, J.M. et. al. VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands. Neurovascular dysfunction in Alzheimer’s disease.

Rozemuller, J.M., Hondius, D.C., Van der Vies, S.M., Li, K.W., Smit, A.B., Heutink, P. VU University Medical Center, Amsterdam, The Netherlands. Combined genomics and proteomics analysis on brain tissue derived from patients with Alzheimer’s disease and tangle only dementia.

Scholtens, L.H., Pijnenburg, R., van den Heuvel, M.P., Dutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Clinical Genetics, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands. Neuron properties of cortical regions.

Scholz, S., Blauwendraat, C. Neurodegenerative Diseases Research Unit, Neurogenetics Branch, NINDS, NIH, Bethesda, USA. Multiple system Atrophy (MSA) genome-wide association study (GWAS).

Shan, L., Bao, A.M., Swaab, D.F. Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; and the Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China. The human histaminergic system in neuropsychiatric disorders.

Siffrin, V. Charité Universitätsmedizin Berlin, Neuroimmunology Lab, Berlin, Germany. Tissue resident CD4+ memory T cells in autoimmune demyelinating CNS disease.

Roelfsema, P.R., Zilles, K., Kooijmans, R.N., Palomero-Gallagher, N., Amunts, K. Netherlands Institute for Neuroscience, Department of Vision and Cognition, Amsterdam, The Netherlands; Forschungszentrum Jülich, Jülich, Germany. Human visual cortical areas V1, V2 and neighboring cortex: mapping of inhibitory interneurons expressing parvalbumin, calbindin and calretinin.

Sneeboer, M.A.M., Snijders, G.J.L.J., Udine, E., Fernández-Andreu, A., Ormel, P.R., Psychiatric donor program of the Netherlands Brain Bank (NBB-Psy), Berdenis van Berlekom, A., Kahn, R.S., Hol, E.M., Raj, T., de Witte, L.D. Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), Utrecht, The Netherlands; Department of Translational Neuroscience (BCRM-UMCU-UU), Utrecht, The Netherlands; Netherlands Brain Bank for Psychiatry, Amsterdam, The Netherlands; Department of Psychiatry, Icahn School of Medicine, New York, United States of America; Neuroimmunology, Netherlands
Institute for Neuroscience, An institute of the royal academy of arts and sciences, Amsterdam, The Netherlands; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA; Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA. Microglial alterations in major depressive disorder.

Sneeboer, M.A.M., van Mierlo, H.C., Stotijn, E., Kahn, R.S., de Witte, L.D. Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University (BCRM-UMCU-UU), Utrecht, The Netherlands; Department of Translational Neuroscience (BCRM-UMCU-UU), Utrecht, The Netherlands; Department of Psychiatry, Icahn School of Medicine, New York, United States of America. Post-mortem studies lack evidence to refer to schizophrenia as a neurinflammatory disorder.

Soreq, H., Kress, M. Hebrew University of Jerusalem, Department of Biological Chemistry, Institute of Life Sciences, Silberman Building, Jerusalem, Israel; Innsbruck Medical University, Innsbruck, Austria. Assessment of SNPs in MRE-harbouring pseudogenes associated with neuropsychiatric disorders.

Tamgüney, G. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. Assessment of prion-like behavior of pathologic protein aggregates from ALS patients.

Tamgüney, G.E. German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. Search for distinct strains of alpha-synuclein from patients with different synucleinopathies.

Treccani, G., Müller, M., Weenstöm, M. Translational Neuropsychiatry Unit, Department of Clinical MedicineRisskov, Denmark; Clinical Memory Research Unit, Department of Clinical Sciences, The Wallenberg Lab, Malmö, Lund University; AG Translationale Psychiatrie, Focus Translationale Neurowissenschaften (FTN), Mainz University, Germany. A role for NG2 positive cells in depression.

Twohig, D., Nielsen, H.M. Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden. Assessment of whether altered levels of alpha-synuclein in cerebrospinal fluid from Alzheimer’s disease patients mirror brain parenchymal levels of alpha-synuclein.

Tzoulis, C., Nido, G.S., Haugarvoll, K., Dölle, C., Dick, F., Guitton, R., Toker, L. Department of Neurology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway. Using multidimensional integration of biological systems to unravel the pathogenesis of Parkinson’s disease.

Van Bree, E.J., Jacobs, F.M.J. Swammerdam Institute for Life Sciences - Frank Jacobs Lab, University of Amsterdam, Amsterdam, The Netherlands. Profiling the enhancer potential of TEs in the aging human brain.

Van Dam, A., Van Wageningen, T., Boddeke, H.W.G.M., Huitinga, I. VU University Medical center, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands; University Medical Centre Groningen, Department of Neuroscience, Groningen, The Netherlands; Netherlands Institute for Neuroscience, Amsterdam, The Netherlands. Elucidating differences in gene expression in white- and grey-matter lesions in MS patients.

Van de Berg, W.D.J. et. al. VU University Medical Center, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands. Chasing genes underlying the progression of sporadic Parkinson’s disease.

Van de Berg, W.D.J., Rozemuller, J.M., Stahlberg, H., Shahmoradian, S. Neuroscience Campus Amsterdam, VU University Medical Center, Department of Anatomy and Neurosciences, Amsterdam, The Netherlands; C-CINA, Biozentrum, University Basel, Switzerland. Subcellular localisation of conformational forms of alpha-synuclein in post-mortem brain tissue of elderly and patients with Parkinson’s disease.

Van der Valk, P., Amor, S. VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands. Lesion formation and development in Multiple Sclerosis.
Van der Vies, S.M., Hoozemans, J.J.M., Rozemuller, J.M., Kennedy, M. VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands; Merck Sharp & Dohme Corp. IRAK-4 kinase inhibitors as a potential drug target for Alzheimer’s Disease in human adult primary glial cells.

Van der Weerd, L., Van Buchem, M.A., Van Duinen, S.G. Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands. Pathological correlates of cortical changes in Alzheimer’s Disease at ultra-high field MRI.

Van Heesbeen, H.J., Von Oerthel, L., Smidt, M.P. University of Amsterdam, Swammerdam Institute for Lifesciences, Department of Molecular Neuroscience, Amsterdam, The Netherlands. Epigenetic mechanisms in maintenance of dopaminergic neurons.

Van Nostrand, W.E., Rozemuller, J.M., Miller, L. Stony Brook University, Department of Neurosurgery, Stony Brook, NY, USA; VU Medical Center, Department of Pathology, The Netherlands; Brookhaven National Laboratory. Determination of metal type, content and speciation in cerebral amyloid angiopathy.

Vangoor, V., De Wit, M., Senthilkumar, K., Gomes Duarte, A., Pasterkamp, R.J. Department of Translational Neuroscience, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands. The role of non-coding RNAs in epilepsy.

Varrone, A., Miranda Azpiazu, P., Varnäs, K. Schou M. Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council; PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Sweden. Identification and validation of transcripts and proteins as well as PET radioligand development in neurodegenerative disorders with special emphasis to Parkinsons disease (PD) and Alzheimer’s disease (AD).

Veerhuis, R. et. al. VU University Medical Center, Department of Pathology and Clinical Chemistry, Amsterdam, The Netherlands. Amyloid associated factors in Alzheimer’s disease.

Veldink, J., Giuliani, F., Luykx, J., Aronica, E. UMC Utrecht Brain Center Rudolf Magnus, Neurogenetics Unit, Utrecht, The Netherlands; University of Amsterdam-Swammerdam Institute for Life Sciences (SILS), Amsterdam, The Netherlands. The role of long non-coding RNAs in Bipolar Disorder.

Vergouw, L.J.M., de Jong, F.J., van Swieten, J.C., van Steenoven, I., Lemstra, A.W., Quadri, M., Bonifati, V., de Gier, Y., Van de Berg, W.D.J., Paliukhovich, I., Li, K.W., Smit, A.B. Department of Neurology and Alzheimercenter zuidwest Nederland, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Neurology and Alzheimercenter, Amsterdam Neuroscience, VU Medical Center, Amsterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Anatomy and Neurosciences, section Clinical Neuroanatomy, Amsterdam Neuroscience, VU Medical Center, Amsterdam, the Netherlands; Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU Medical Center, Amsterdam, the Netherlands. Identification of molecular and genetic mechanisms in familial Lewy Body Dementia: a novel approach.

Voet, S., Mc Guire, C., Van Loo, G. VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium. Characterization of inflammasome activation in samples from MS patients.

Wennström, M. et. al. Lund University, Department of Clinical Science, Malmö, Sweden. Analyses of distribution and activation of NG2+glialcells in the Alzheimer brain.

Wergeland, S., Schenk, G., Bø, L., Van De Berg, W.D.J. VU University Medical Center, Department of Anatomy and Neurosciences, Clinical Neuroscience, Amsterdam, The Netherlands; Haukeland University Hospital, Department of Neurology, Bergen, Norway. The oligodendrocyte proteome in multiple sclerosis.

Werkman, I., Gorter, R.P., Baron, W. Department of Biomedical Sciences of Cell & Systems, section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. Reshaping the ECM landscape in MS lesions to promote remyelination.

Wetzels, S., Vanmierlo, T., Scheijen, J.L.J.M., Schalkwijk, C.G., Hendriks, J.J.A., Wouters, K. Cardiovascular Research Institute Maastricht, Department of Internal medicine, Maastricht University, Maastricht, the Netherlands; Biomedical Research Institute, Department of Immunology and Biochemistry, Hasselt University, Hasselt, Belgium; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands. Advanced gkycation endproducts in multiple sclerosis.

Wilhelmus, M.M.M. Amsterdam University Medical Centers, Department of Anatomy and Neurosciences. Triple P: New P2Y12 receptor targeting PET tracers as next generation neuroinflammation markers in Parkinson’s disease.

Winner, B., Riemenschneider, M. Institute of Human Genetics, Department of Stem Cell Biology, Erlangen, Germany; Department of Neuropathology, University Hospital Regensburg, Regensburg, Germany. T helper cell-induced neurotoxicity in sporadic Parkinson’s disease.

Xicoy, H., Brouwers, J.F., Wieringa, B., Martens, G.J.M. Dept. Cell biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre; Dept. Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Neuroscience, Faculty of Science; Dept. Biochemistry & Cell Biology, Lipidomics Facility, Faculty of Veterinary Medicine, Utrecht University. Transcriptomic and lipidomic analysis of substantia nigra and striatum of Parkinson’s disease patients and control individuals.

Xu, Y., Huang, M., Zhou, W. Hu, J. Zhejiang Province Key Laboratory of Mental Disorder’s Management, Department of Mental Health, HangZhou, Zhejiang, China PR. A neural circuit in Schizophrenia: a postmortem study.

Yeo, S., Kim D., Choi S.H., Choi Y.R., Yoon J.H., Choe Y., Korea Brain Research Institute, Dong-gu, Daegu, Republic of Korea. Topographic biomarkers reveal defective neurovascular units in Schizophrenia.

Zhang, X., O’callaghan, P., Zhang, G. Tan, Y., Lindahl, U., Li, J.-P. Department of Neuroscience, Department of Molecular and Cellular Biology and Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden. Roles of heparan sulfate/heparanase in clearance of beta-amyloid from the brain – relevance to Alzheimer’s disease.

Zhao, J., Verwer, R., Lucassen, P., Kessels, H. Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands. The molecular basis of depression and suicide.

Zhu, S., Mamo, T., Viejo-Borbolla, A. Institute of Virology, Hannover Medical School; Institute of Molecular Biology, Hannover Medical School; Department of Pediatric Nephrology, Gastroenterology & Metabolic Diseases, Hannover Medical School; Institute of Virology, Hannover Medical School, Hannover, Germany. Derivation of human peripheral neurons from inducible pluripotent stem cells suggests the existence of a novel neuronal population.

Zilocchi, M., Finzi, G., Lualdi, M., Sessa, F., Fasano, M., Alberio, T. Department of Science and High Technology, Center of Neuroscience, University of Insubria, Italy; Department of Pathology, University Hospital ASST-Settelaghi, Varese, Italy. Mitochondrial alterations in Parkinson’s disease human samples and cellular models.

Pharmaceutical companies

In 2017 NBB tissue was supplied to the following research projects of pharmaceutical companies:

AbbVie Deutschland GmbH & Co. KG
- Assessment of lipid content of well-defined AD brains vs age-matched control brains and brains of young subject: verification of age- and disease-associated changes in (sphingo)lipid content and its correlation to neurodegeneration, abeta and Tau pathology.
- Assessment of sphingolipid content in Huntington’s Disease brain, CSF, and plasma.
- Discovery of new radioligands for aggregated Tau.
- Identification of key Tau pathological species and underlying pathological molecular mechanisms in the brain of sporadic Alzheimer disease at Braak stage I-II and V-VI.

AC Immune SA
- Development of immunotherapy approaches for treatment of Huntington’s disease.
- Identification of potential therapeutic targets for Age-Related Neurodegenerative diseases.
- Novel PET tracers of alpha-synuclein for the diagnosis of Parkinson’s disease.
- Novel PET tracers of TDP-43 for the diagnosis of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

Actelion Pharmaceuticals Limited
- Quantitative expression survey of GPCRs in neuronal sub-populations affected by neurodegenerative diseases.

Asterand UK Acquisition Limited (BioIVT)
- Purification of PHF-Tau from brain tissues of donors with progressive supranuclear palsy.
- Screening a panel of alpha-SYN research antibodies, using FFPE sections from normal donors and those with Parkinson’s Disease.

BioArctic Neuroscience AB
- Studies of alpha-synuclein in Parkinson’s disease and control brain.
Biogen Inc.
- Analysis of exosomes purified from Human CSF.
- Characterization of Aβ oligomers in AD brain tissues.
- Characterization of BIIB054 binding pattern to pathological variants of α-syn in human disease tissue.
- Characterization of Parkin activity and transcriptional profiling in sporadic PD brain tissue.
- SorLA as a Target for AD.
- The role of NF-κB canonical and non-canonical signaling in neurodegenerative disease.
- Quantifying pathogenic alpha synuclein species across Parkinson’s disease Braak Stages.

BioMed X GmbH
- Tau post-translational modifications and their relevance for Alzheimer’s disease.

Boehringer Ingelheim Pharma GmbH & Co.KG
- Target identification in non-diseased human Area postrema.
- Target identification and validation in non-diseased human Pituitary Gland.

Charles River Nederland BV
- Development of a microglia assay.
- Validation of therapeutic targets in cultured human microglia.

Charles River Laboratories Edinburgh Limited
- The determination of in vitro binding of test item to the brain proteins in Rhesus Monkey and Man.

Crucell Holland B.V.
- Characterization of the antibody response induced by tau vaccine candidates: Assessment of serum reactivity to control vs. AD brain tissue.

Evotec AG
- Proteomic analysis of huntingtin protein variants in post-mortem brain tissue from Huntington’s Disease patients.

GlaxoSmithKline
- Neurodegeneration and inflammation pathway activation in human AD, HD, PSP, and FTD tissue.
- Neurodegeneration and inflammation pathway activation in human ALS spinal cord tissue.
- Neurodegeneration and inflammation pathway activation in human Multiple sclerosis lesions.

Grüenthal GmbH
- Functional characterization of human DRGs for drug development.

Imanova Limited (Invicro)
- Evaluation of novel PET tracers and drug targets.

Janssen Prevention Center
- Detect differences in post-mortem tissue between subjects with and without Alzheimer’s disease.

Janssen Pharmaceutica NV
- Analysis of tau aggregation and spreading in Alzheimer’s disease and other tauopathies including PSP and evaluating anti-Abeta antibodies for plaque detection.

Lysosomal Therapeutics Inc.
- Glucocerebrosidase (GCase) and Acid ceramidase (ACR) enzyme activity, mRNA and substrate levels in human brain and plasma tissue samples of PD patients and controls: a pilot study.

Novartis Pharma AG
- Tissue Cross Reactivity Assay.
Roche Holding AG
Evaluation of changes in GCase activity and substrate levels in human brain from PD.

UCB Pharma SA
Assessment of biomarkers for Parkinson’s disease to support the identification of new therapeutic agents for the treatment of parkinson’s disease.
Bridging animal models to human disease: Targeting glia disease biologies for therapeutic benefit in ALS.
Development and validation of in vitro assays for the identification of therapeutics targeting synucleinopathies.
Evaluation of binding of UCB proprietary molecules to Alzheimer’s patients brains for the identification of new therapeutic agents for the treatment of Tauopathies and Alzheimer’s disease.
Evaluation of UCB proprietary molecules binding to brain samples from patients suffering of demyelinating diseases like multiple sclerosis (MS) for the identification of new therapeutic agents.
Publications 2015 – 2017

This chapter lists the publications that have resulted from research using NBB tissue in 2015-2017. Publications in which the NBB was actively involved and therefore listed as a corporate co-author are listed separately.

Publications with NBB as co-author

Publication list

Song, H., Kim, W., Kim, S.-H., & Kim, K.-T. (2016). VRK3-mediated nuclear localization of HSP70 prevents glutamate excitotoxicity-induced apoptosis and Aβ accumulation via enhancement of ERK phosphatase VHR activity. *Scientific Reports, 6*. https://doi.org/10.1038/srep38452

Staff and collaborations

Managing director Netherlands Institute for Neuroscience
R. van der Neut

NBB staff
Director
I. Huitinga
Technical coordinator
M. Kooreman
Office manager
M. de Goeij
Communication officer donor program
P. Brom
Account manager
L. Shan
Donor registration and tissue dissemination officer
L. Boekel
Lab technicians
A. van den Berg
P. Evers
Medical data coordinator
M. Groot
Medical writers
I. Ehmer
E. Breeuwer
Administrative assistant
A. Achterbergh-Jansen
Postdoc researcher NBB-Psy
M. Mizee
Lab technician NBB-Psy
A. Adelia

NBB-Psy staff (until 2017)
NBB-Psy Clinical coordinator
S. Palmen
NBB-Psy Project coordinator
M. Rademaker
G. de Lange
NBB-Psy research assistants
K. van Dijk (until 2016), PTSS; AMC Amsterdam; Dept. of Psychiatry
Y. Kras (until 2017), ADHD and autism spectrum disorder; Karakter/Radboudumc, Nijmegen
L. Kuijper (until 2017), OCD and body dismorphic disorder; AMC Amsterdam; Dept. of Psychiatry
C. Penseele (since 2016, until 2017), PTSS; AMC Amsterdam; Dept. of Psychiatry
A. Prins (until 2015), Depression; VUmc/GGZ inGeest Amsterdam
M. Tasma (until 2017), OCD; VUmc/GGZ inGeest Amsterdam

Collaborators
Neuropathologists (Department of Pathology, VUmc)
J.M. Rozemuller
P. van der Valk
M. Bugiani
P. van der Voorn

Autopsy team 2017

We owe special thanks to the autopsy assistants of the Pathological Institute, VUmc, Amsterdam: A. Bakker, P. Kraaijeveld, T. Oldert and M. van Ooijen, and to the undertakers of Rouwservice Nederland, Uitvaartcentrum Zuis (Unigra) and Vervoerbedrijf P.A. Blanker, for their dedication to the Netherlands Brain Bank.

Scientific Committee (Tissue Advisory Board)
I. Huitinga (NBB)
M. Kooreman (NBB)
J.M. Rozemuller (Department of Pathology, VUmc)
L. Shan (NBB)
J. Verhaagen (Netherlands Institute for Neuroscience)
Additional members for NBB-Psy requests:
- P. Eikelenboom (GGZ inGeest)
- S. Palmen (Department of Psychiatry, Risk and Prevention, UMC Utrecht)
- M. Mizee (NBB)

Advisory Board
- D. Denys (Psychiatry)
- J. Gevers (Health Law)
- P. Heutink (Genetics)
- A. Keizer (Geriatrics)
- H. Kremer (Neurology)
- E. Marchiori (Informatics)
- C. Polman (Neurology)
- P. van der Valk (Pathology)

Clinical cohort coordinators NBB-Psy
- M. Boks, MD, PhD (bipolar disorder)
- J. Buitelaar, MD, PhD (attention-deficit hyperactivity disorder)
- D. Denys, MD, PhD (obsessive compulsive disorder)
- O. van den Heuvel, MD, PhD (obsessive compulsive disorder)
- R. Kahn, MD, PhD (schizophrenia)
- M. Olff, MD, PhD (post-traumatic stress disorder)
- B. Penninx, MD, PhD (major depression)
- W. Staal, MD, PhD (autism spectrum disorders)

Steering committee NBB-Psy
- J. Buitelaar, MD, PhD (Radboud University Medical Center, Nijmegen)
- D. Denys, MD, PhD (AMC, Amsterdam)
- J. Gribnau, PhD (Erasmus MC, Rotterdam)
- R. Kahn, MD, PhD (UMC Utrecht)
- R. van der Neut, PhD (Netherlands Institute for Neuroscience, Amsterdam)
- B. Penninx, MD, PhD (VUmc, Amsterdam)
- S. Storimans (Vereniging voor Manisch Depressieven en Betrokkenen)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Alzheimer’s disease</td>
</tr>
<tr>
<td>ADHD</td>
<td>Attention deficit hyperactivity disorder</td>
</tr>
<tr>
<td>ASD</td>
<td>Autism spectrum disorder</td>
</tr>
<tr>
<td>BPD</td>
<td>Bipolar disorder</td>
</tr>
<tr>
<td>Contr</td>
<td>Non-demented control donors</td>
</tr>
<tr>
<td>DEPMA</td>
<td>Bipolar disorder</td>
</tr>
<tr>
<td>FTLD/tau</td>
<td>Frontotemporal lobar degeneration/Tauopathy</td>
</tr>
<tr>
<td>MDD</td>
<td>Major depressive disorder</td>
</tr>
<tr>
<td>MS</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>OCD</td>
<td>Obsessive compulsive disorder</td>
</tr>
<tr>
<td>Other</td>
<td>Other diagnoses</td>
</tr>
<tr>
<td>Other dem</td>
<td>Other types of dementia</td>
</tr>
<tr>
<td>PANR</td>
<td>Pathological report not ready yet</td>
</tr>
<tr>
<td>PD/DLBD</td>
<td>Parkinson’s disease/Diffuse Lewy body dementia</td>
</tr>
<tr>
<td>PSP</td>
<td>Progressive supranuclear palsy</td>
</tr>
<tr>
<td>Psy</td>
<td>Psychiatric disorders (unspecified)</td>
</tr>
<tr>
<td>PTSD</td>
<td>Posttraumatic stress disorder</td>
</tr>
<tr>
<td>SCHIZO</td>
<td>Schizophrenia</td>
</tr>
</tbody>
</table>